

ICT Call 11 – Objective 3.1 Nanoelectronics

Isabel Vergara

European Commission Directorate-General for Communications Networks, Content & Technology Unit A4 "Components"

Presentation Outline

- What are we looking for?
- Is this new?
- What do we not want?
- Additional/background documents

ICT WP 2013 – Some information

The Work Programme will define the priorities for calls for proposals that will result in projects to be launched in 2013.

- ✓ Last WP for FP7
- ✓ Only one year of duration
- ✓ It will ensure a certain degree of continuity in priorities and at the same time serve as a bridge to activities in Horizon 2020.

Objective 3.1 - Introduction

- Overcoming serious barriers, which are currently slowing down the expected evolution of CMOS, including the fundamental limits of devices and materials, system level limits, energy-efficiency, power density issues, design complexity issues, and cost.
- In line with the ITRS roadmap.
- It complements **FET ← Obj. 3.1** → **ENIAC JU**.
- Take-up actions in nanoelectronics, including Europracticetype actions, are addressed under Objective 3.3.

Objective 3.1 - Overall aim

To reinforce European industrial leadership in Nanoelectronics as a key enabling technology through miniaturisation, energy-efficiency, performance increase and manufacturability, for information and communication systems and other applications in 2020 and beyond;

To promote *inter-disciplinary* R&I activities by bringing together different research domains and constituencies with the aim of increasing impact and of bridging to Horizon 2020.

Objective 3.1 - Summary			Call 11 18.09.2012 - 16.04.2013
Target outcomes	Funding		32 M€
a) Integration of advanced nanoelectronics devices and technologies (16nm and below)			
b) Advanced nanoelectronics manufacturing processes.	STREP	31,5 M€	
c) Design, modelling and simulation for advanced nano-electronics technologies			
d) International Co-operation	1 SA	0,5	5 M€

a) Integration of advanced nanoelectronics devices and technologies (16nm and below)

- New solutions to boost <u>performance</u> in More Moore. This includes Ge, III-V compound semiconductors, graphene, CNT or nanowires.
 - ✓ "Equivalent scaling"
 - ✓ Fully Depleted SoI are included
 - $\checkmark\,$ Memories are not excluded, but it is not our priority
- Innovative solutions to boost <u>functionality</u> in More than Moore.

✓ e.g. graphene for analog/RF, new materials for high power devices

a) Integration of advanced nanoelectronics devices and technologies (16nm and below)

- New <u>switches</u> for Beyond CMOS and beyond silicon, chargebased or non-charge-based with a sufficient level of technological maturity.
 - ✓ In line with ITRS: Non-Conventional FETs and other Charge-based Information Carrier Devices (Spin FET and Spin MOSFET Transistors)
 - ✓ Non-FET, Non Charge-based 'Beyond CMOS' Devices (with certain degree of maturity)
- <u>Interconnects and 3D integration</u> at device, chip and wafer level.
 - \checkmark Novel materials for interconnects
 - ✓ 3D device level: FinFets
 - ✓ 3D chip and wafer level: TSV, wafer-level packaging

b) Advanced nanoelectronics manufacturing processes

- More Moore IC Manufacturing: efficiency and productivity enhancement
- Manufacturing approaches to Beyond-CMOS and advanced More-than-Moore, and to their integration with nano-CMOS including 3D integration

c) Design, modelling and simulation for advanced nano-electronics technologies

- Circuit- and system-level modelling and simulation: e.g. quantum and atomic scale effects; electro-thermo- mechanical effects; modelling for new materials, processes and devices.
- Design technologies for "Si complexity" challenges addressing nonideal scaling of device parasitics and supply/threshold voltages; manufacturing variability; thermal effects; decreased reliability; ageing effects; coupled high-frequency devices and interconnects.
- Innovating with nanoelectronics designing heterogeneous SOC integration, re-using IP.

d) International Co-operation

One support action to develop a European strategy which addresses the challenges in manufacturing for 450 mm in dialogue with G450C and with the US, Korea, and Taiwan.

Is this new? Further clarifications

- Equipment assessment in Nanoelectronics: in objective 3.3
- Brokerage services (EUROPRACTICE type): in objective 3.3

What do we not want?

- <u>We want</u> very Advanced and Multidisciplinary Research, but
- We do not want
 - Research focused only on materials
 - Research focused on large systems integration
 - Duplication of R&D
 - Low innovation
 - Academic proposals (low exploitation, impact)

Additional/background documents

- FP7 Workshop on Advanced Nanoelectronics
 Technologies (Sept. 2009)
 (ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/nanoelectronics/0112
 09-wshop-rep-ai-v7b-clean_en.pdf
- Workshop on Manufacturing of Beyond CMOS and Advanced More than Moore Devices (Dec. 2010) (<u>http://cordis.europa.eu/fp7/ict/components/elements/wshop-report-v6-fin-070211.pdf</u>)
- Benefits and Measures to Set Up 450mm Semiconductor Prototyping and to Keep Semiconductor Manufacturing in Europe – Final Report (Feb.2012) (http://cordis.europa.eu/fp7/ict/components/documents/4 50mm-final-report.pdf)

Thank you....

isabel.vergara-ogando@ec.europa.eu

DG CONNECT: http://ec.europa.eu/information_society

Unit A4 Components: http://cordis.europa.eu/fp7/ict/components

European research on the web: http://cordis.europa.eu